Cifre significative a approssimazioni

CIFRE SIGNIFICATIVE

MENTRE STUDI GUARDA ANCHE IL VIDEO CLICCANDO QUI:

https://youtu.be/oWdVTBDDf5s

Le cifre significative di un numero sono tutte le cifre che portano informazione. In generale sono significative <u>tutte le cifre del numero esclusi gli zeri iniziali</u>. Nel caso in cui il numero derivi da una misura strumentale, <u>vanno tolte anche le cifre che sono inferiori alla sensibilità dello strumento</u>. Gli zeri finali dopo la virgola si considerano teoricamente significativi (perché tengono traccia della sensibilità dello strumento) anche se matematicamente possono essere eliminati senza creare problemi.

Esempi senza indicazioni sulla sensibilità dello strumento:

- 100'228 ha 6 cifre significative.
- 0,00<mark>23</mark> ha 2 cifre significative perchè gli zeri iniziali si escludono.
- 0342,002 ha 6 cifre significative perchè lo zero iniziale si esclude = 342,002.
- 1,100 ha teoricamente 4 cifre significative (se gli ultimi due zeri derivano effettivamente da una misura) ma praticamente se ne possono considerare 2 e si eliminano gli zeri finali = 1,1.

Esempi con indicazioni sulla sensibilità dello strumento:

- 45,83284 V con sensibilità = 0,01 V ha solo 5 cifre significative anzichè 8 perché vanno eliminate anche quelle che sono più a destra della sensibilità dello strumento.
- 0,00<mark>145</mark>6 A con sensibilità = 0,00001 A ha solo 3 cifre significative anzichè 4 perché vanno eliminate anche quelle che sono più a destra della sensibilità dello strumento.

Se vengono eliminate delle cifre significative si perde dell'informazione: si sta effettuando quello che si chiama <u>approssimazione</u> (o arrotondamento). L'approssimazione è un male necessario perché non è possibile avere infiniti numeri dopo la virgola. L'importante è approssimare correttamente per mantenere l'errore in un range accettabile.

REGOLE DI APPROSSIMAZIONE

- 1) Tagliare il numero mantenendo sempre 2, o meglio 3, cifre significative.
- 2) Aumentare l'ultima cifra di 1 se la prima cifra tagliata è uguale o superiore a 5.

Attenzione: avere 3 cifre significative non significa avere sempre 3 numeri dopo la virgola, vedi gli esempi.

Esempi:

• 0,4358313 ha 7 cifre significative, ne mantengo 3:

= 0,4358313 siccome il primo numero tagliato è 8, allora il 5 diventa $6 \cong 0,436$

12,438 ha 5 cifre significative, ne mantengo 3:

= 12,438 siccome il primo numero tagliato è 3, allora il 4 resta $4 \cong 12,4$

• 103'428 ha 7 cifre significative, non ci sono numeri decimali, non si può tagliare \cong **103'428**

2'436,5 ha 5 cifre significative, ne devo mantenere per forza 4 prima della virgola:

= 2'436,5 siccome il primo numero tagliato è 5, allora il 6 diventa 7 ≅ 2'437

• 0,00002872 ha 4 cifre significative, ne mantengo 3:

= 0,0000287 siccome il primo numero tagliato è 2, allora il 7 resta 7 \cong **0,0000287**

• 0,00429528 ha 6 cifre significative, ne mantengo 3:

= 0.00429528 siccome il primo numero tagliato è 5, allora il 9 diventa 0 (e può essere eliminato perché non è più significativo) e il 2 diventa 3 \cong 0,00430 = 0.0043

• 19,999 ha 5 cifre significative, ne mantengo 3:

= 19,999 siccome il primo numero tagliato è 9, allora, sommando 1, tutti i nove diventano 0 e l'1 diventa

2. Lo zero dopo la virgola può essere eliminato perché non è più significativo. \cong 20,0 = **20**

QUANDO SI
APPROSSIMA
BISOGNA USARE IL
SIMBOLO "CIRCA
UGUALE"

~

Multipli, sottomultipli, notazione scientifica e prefissi

Nome	Numero	Notazione scientifica	Prefisso e pronuncia	
Quadrilione	1'000'000'000'000'000'000'000'000	10 ²⁴	Y (Yotta)	
Triliardo	1'000'000'000'000'000'000'000	10 ²¹	Z (Zetta)	
Trilione	1'000'000'000'000'000'000	10 ¹⁸	E (Exa)	
Biliardo	1'000'000'000'000'000	10 ¹⁵	P (Peta)	
Bilione	1'000'000'000'000	10 ¹²	T (Tera)	
Miliardo	1'000'000'000	10 ⁹	G (Giga)	
Milione	1'000'000	10 ⁶	M (Mega)	
Mille	1'000	10 ³	k (kilo o chilo)	
Cento	100	10 ²	h (etto)	1
Dieci	10	10 ¹	da (deca)	DA
Uno	1	10 ⁰		NON
Decimo	0,1	10 ⁻¹	d (deci)	USARE
Centesimo	0,01	10 ⁻²	c (centi)	}
Millesimo	0,001	10 -3	m (milli)	
Milionesimo	0,000 001	10 ⁻⁶	μ (micro)	
Miliardesimo	0,000 000 001	10 -9	n (nano)	
Bilionesimo	0,000 000 000 001	10-12	p (pico)	
Bilardesimo	0,000 000 000 000 001	10 ⁻¹⁵	f (femto)	
Trilionesimo	0,000 000 000 000 000 001	10 ⁻¹⁸	a (atto)	
Triliardesimo	0,000 000 000 000 000 000 001	10 ⁻²¹	z (zepto)	
Quadrilionesimo	0,000 000 000 000 000 000 000 001	10 ⁻²⁴	y (yocto)	

ATTENZIONE!!!

- O si mette la notazione scientifica o si mette il prefisso, mai tutti e due!!
- Le maiuscole/minuscole dei prefissi sono importanti altrimenti si possono confondere con altri simboli.

Proprietà delle potenze utili per telecomunicazioni

1) POTENZA ZERO

$$a^0 = 1$$

qualsiasi numero elevato alla zero vale 1

Esempio 1: $10^0 = 1$

Esempio 2: $528231^0 = 1$

Esempio 3: $0,11829839^0 = 1$

2) PRODOTTO di potenze con la stessa base

$$a^m \cdot a^n = a^{m+n}$$

si <u>sommano</u> gli esponenti

Esempio 1: $10^7 \cdot 10^2 = 10^{7+2} = 10^9$

Esempio 2: $10^4 \cdot 10^{-3} = 10^{4+(-3)} = 10^1 = 10$

Esempio 3: $10^{-2} \cdot 10^6 = 10^{-2+6} = 10^{-4}$

3) RAPPORTO di potenze con la stessa base

$$\frac{a^m}{a^n} = a^{m-n}$$

si <u>sottraggono</u> gli esponenti

Esempio 1:
$$\frac{10^7}{10^2} = 10^{7-2} = 10^5$$

Esempio 2:
$$\frac{10^4}{10^{-3}} = 10^{4-(-3)} = 10^7$$

Esempio 3:
$$\frac{10^{-3}}{10^{-3}} = 10^{-3-(-3)} = 10^0 = 1$$

4) SPOSTAMENTO SOPRA o SOTTO la frazione

$$\frac{1}{a^n} = a^{-n}$$

si cambia segno all'esponente

Esempio 1:
$$\frac{1}{10^2} = 10^{-2}$$

Esempio 2:
$$10^{-3} = \frac{1}{10^3}$$

Esempio 3:
$$\frac{1}{10^{-1}} = 10^1 = 10$$

Questa deriva dal fatto che 1 può essere visto come a^0 quindi si applica la proprietà 3):

$$\frac{1}{a^n} = \frac{a^0}{a^n} = a^{0-n} = a^{-n}$$

5) POTENZA di potenza con la stessa base

$$(a^m)^n = a^{m \cdot n}$$

si moltiplicano gli esponenti

Esempio 1:
$$(10^7)^2 = 10^{14}$$

Esempio 2:
$$(10^{-2})^2 = 10^{(-2)\cdot 2} = 10^{-4}$$

Esempio 3:
$$(10^{-3})^{-4} = 10^{(-3)\cdot(-4)} = 10^{12}$$

6) SOMMA o DIFFERENZA di potenze

Stessa base, esponente diverso:

$$a^m + a^n = resta uguale!$$

non si può fare nulla!!

Esempio 1:
$$10^7 + 10^2 = 10^7 + 10^2$$

Esempio 2:
$$10^4 + 10^{-3} = 10^4 + 10^{-3}$$

Esempio 3: $10^{-2} + 10^6 = 10^{-2} + 10^6$

Stessa base, stesso esponente:

$$A \cdot a^n + B \cdot a^n = (A + B) \cdot a^n$$

si raccoglie a fattor comune e si sommano i coefficienti

Esempio 1:

$$3 \cdot 10^3 + 2 \cdot 10^3 = (3+2) \cdot 10^3 = 5 \cdot 10^3$$

Esempio 2:

$$10^{-4} - 2 \cdot 10^{-4} = (1 - 2) \cdot 10^{-4} = -10^{-4}$$

Esempio 3

$$-4 \cdot 10^9 - 2 \cdot 10^9 = (-4 - 2) \cdot 10^9 = -6 \cdot 10^9$$

Notazione scientifica, prefissi e conversioni

NOTAZIONE SCIENTIFICA

Nella notazione scientifica per utilizzi tecnici i numeri devono essere scritti in questo formato:

$$N \cdot 10^n$$
 u.m.

- il numero *N* deve avere almeno 2, o meglio 3, cifre significative.
- l'esponente n deve essere un numero intero multiplo di 3 (0, 3, -3, 6, -6, 9, -9, ecc). Se l'esponente è zero succede che $N\cdot 10^0 = N\cdot 1 = N$ quindi si mantiene solo il numero N.
- l'unità di misura u.m. deve essere sempre presente senza prefissi.

NOTAZIONE COI PREFISSI

I prefissi sostituiscono il fattore 10^n della notazione sicentifica in base alla tabella dei prefissi. Non si mettono mai tutti e due!!

CONVERSIONI

E' possibile convertire un numero in notazione scientifica seguendo questi semplici passaggi.

- CASO 1: Se si sa a quale esponente si vuole arrivare:
 - 1) Si sceglie di quante unità aumentare o diminuire l'esponente n (sempre multipli di 3).
 - 2) Si sposta la virgola del numero *N* delle stesse unità considerando che: se l'esponente è aumentato il numero deve ridursi e viceversa.
 - 3) Se necessario si approssima con 2-3 cifre significative.
- <u>CASO 2</u>: Se si sa a quale <u>numero</u> si vuole arrivare:
 - 1) Si sceglie di quante unità spostare la virgola del numero N (sempre multipli di 3).
 - 2) Si aumenta o si riduce l'esponente *n* delle stesse unità considerando che: se il numero è aumentato l'esponente deve ridursi e viceversa.
 - 3) Se necessario si approssima con 2-3 cifre significative.

ESERCIZI SULLE CONVERSIONI

Esempio 1: Si vuole convertire la misura 150'000 V in notazione scientifica con esponente 3 e poi coi prefissi.

Soluzione 1: Siamo nel caso 1, con esponente scelto n=3, quindi sicuramente ci sarà il fattore $\cdot 10^3$. Bisogna trovare il numero. Considerando che prima non c'erano esponenti (n=0), questo viene aumentato di 3 unità. Il numero dovrà quindi ridursi spostando la virgola di 3 posti. Successivamente al posto di 10^3 si può scrivere il rispettivo prefisso "k".

$$150'000 \text{ V} = 150 \cdot 10^3 \text{ V} = 150 \text{ kV}$$
3 posti

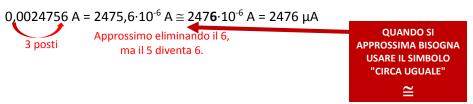
Esempio 2: Si vuole convertire il numero dell'esercizio 1 con esponente 6 e poi coi prefissi.

Soluzione 2: Siamo ancora nel caso 1, con esponente scelto n=6, quindi sicuramente ci sarà il fattore $\cdot 10^6$. Bisogna trovare il numero. Considerando che prima c'era esponente n=3, questo è aumentato ancora di 3 unità. Il numero dovrà quindi ridursi spostando la virgola di altri 3 posti. Successivamente al posto di 10^6 si può scrivere il rispettivo prefisso "M".

150·
$$10^3$$
 V = 0,150 · 10^6 V = 0,15 · 10^6 V = 0,15 MV
Lo 0 non
significativo si
può togliere

Esempio 3: Si vuole convertire la misura 0,0024756 A in notazione scientifica con esponente -6 e poi coi prefissi.

Soluzione 3: Siamo nel caso 1, con esponente scelto n = -6, quindi sicuramente ci sarà il fattore $\cdot 10^{-6}$. Bisogna trovare il numero. Considerando che prima non c'erano esponenti (n=0), questo viene ridotto di 6 unità. Il numero dovrà quindi aumentare spostando la virgola di 6 posti. Successivamente si può approssimare il numero con 3 cifre significative. Infine al posto di 10^{-6} si può scrivere il rispettivo prefisso " μ ".



Esempio 4: Si vuole convertire il numero dell'esercizio 3 con esponente -3 e poi coi prefissi.

Soluzione 4: Siamo ancora nel caso 1, con esponente scelto n = -3, quindi sicuramente ci sarà il fattore $\cdot 10^{-3}$. Bisogna trovare il numero. Considerando che prima c'era esponente n = -6, questo si è ridotto di 3 unità. Il numero dovrà quindi aumentare spostando la virgola di 3 posti. Successivamente si può approssimare il numero con 3 cifre significative. Infine al posto di 10^{-3} si può scrivere il rispettivo prefisso "m".

2476·10⁻⁶ A = 2,476·10⁻³ A
$$\cong$$
 2,48·10⁻³ A = 2,48 mA

Approssimo a 3 cifre significative eliminando il 6,

ma il 7 diventa 8.

Esempio 5: Si vuole convertire la misura 0,7581299 A in notazione scientifica spostando la virgola di 3 posti e poi coi prefissi.

Soluzione 5: Siamo nel caso 2. Con la virgola spostata 3 volte il numero diventa = 758,1299. Bisogna trovare l'esponente. Il numero è stato aumentato di 3 posti (da 0,7581299 a 758,1299), quindi l'esponente dovrà ridursi di 3 unità. Considerando che prima non c'erano esponenti (n=0), riducendolo di 3 unità va a finire a n= -3. Successivamente si può approssimare il numero con 3 cifre significative. Infine al posto di 10⁻³ si può scrivere il rispettivo prefisso "m".

0.7581299 = 758,1299
$$\cdot$$
10⁻³ A \cong 758 \cdot 10⁻³ A = 758 mA

Approssimo a 3 cifre

significative eliminando i

numeri dopo la virgola

Esempio 6: Si vuole convertire la misura dell'esercizio 5 spostando la virgola di altri 3 posti e poi coi prefissi.

Soluzione 6: Siamo nel caso 2. Con la virgola spostata di altre 3 volte il numero diventa = 758129,9. Bisogna trovare l'esponente. Il numero è stato aumentato di 3 posti, quindi l'esponente dovrà ridursi di altre 3 unità. Considerando che prima c'erano esponente n=-3, riducendolo di 3 unità va a finire a n= -6. Successivamente si può approssimare il numero con 3 cifre significative. Infine al posto di 10^{-6} si può scrivere il rispettivo prefisso "µ".

```
758,1299\cdot10<sup>-3</sup> A = 758'129,9\cdot10<sup>-6</sup> A \cong 758'130\cdot10<sup>-6</sup> A = 758'130 \muA Approssimo a 3 cifre significative eliminando i numeri dopo la virgola, ma il 9 diventa 0 e il 2 diventa 3.
```

Esercizi riepilogativi su notazione e proprietà delle potenze

Esercizio 6: Conoscendo la tensione V = 2,7982 mV e la resistenza R = 14,2674 k Ω determinare la corrente I mediante la legge di Ohm (I = V/R) sia in notazione scientifica che coi prefissi con 3 cifre significative.

Svolgimento 6: Per prima cosa occorre convertire in notazione scientifica i dati, sostituendo ai prefissi la giusta potenza di 10. **NON FARE I CONTI PRIMA DI AVER CONVERTITO!!!** $V = 2,7982 \cdot 10^{-3} V e R = 14,2674 \cdot 10^{3} \Omega$. L'approssimazione conviene farla alla fine per avere la massima precisione, facciamo prima i conti. I numeri vanno divisi normalmente, mentre per gli esponenti si applica la proprietà delle potenze.

$$I = \frac{V}{R} = \frac{2,7982 \cdot 10^{-3}}{14.2674 \cdot 10^{3}} = 0,1961254328 \cdot 10^{(-3-3)} \approx 0,196 \cdot 10^{-6} A$$

ALL'INIZIO DEVE ESSERE SCRITTA LA FORMULA Approssimo a 3 cifre significative eliminando i numeri in eccesso.

I RISULTATI FINALI DEVONO AVERE L'UNITA' DI MISURA!!!

Il numero ottenuto è corretto ma non è un buon risultato perché bisogna cercare di avere meno cifre possibili dopo la virgola. Possiamo convertirlo spostando la virgola 3 posti a destra. Il numero cresce, quindi l'esponente cala di 3 unità. infine togliamo la notazione scientifica e mettiamo il prefisso.

$$I \cong 0,196 \cdot 10^{-6}A = 196 \cdot 10^{-9}A = 196 nA$$

Esercizio 7: Conoscendo la corrente I = 0,237 μ A e la resistenza R = 2,496 M Ω determinare la tensione V mediante la legge di Ohm (V = I·R) sia in notazione scientifica che coi prefissi con 3 cifre significative.

Svolgimento 7: Per prima cosa occorre convertire in notazione scientifica i dati, sostituendo ai prefissi la giusta potenza di 10. I = $0.237 \cdot 10^{-6}$ A e R = $2.496 \cdot 10^{6}$ Ω . L'approssimazione conviene farla alla fine per avere la massima precisione, facciamo prima i conti. I numeri vanno moltiplicati normalmente, mentre per gli esponenti si applica la proprietà delle potenze.

$$V = I \cdot R = 0.237 \cdot 10^{-6} \cdot 2.496 \cdot 10^6 = 0.591552 \cdot 10^{(-6+6)} \cong 0.592 \cdot 10^0 \ V = 0.592 \ V$$
Approssimo a 3 cifre significative eliminando i numeri in eccesso.

L'1 diventa 2.

Il numero ottenuto è corretto ma bisogna cercare di avere meno cifre possibili dopo la virgola. Possiamo convertirlo spostando la virgola 3 posti a destra. Il numero cresce, quindi l'esponente cala di 3 unità. Infine togliamo la notazione scientifica e mettiamo il prefisso.

$$V \cong 0.592 V = 592 \cdot 10^{-3} V = 592 \ mV$$

Esercizio 8: Conoscendo la corrente I = 9,45 kA e la resistenza R = 2700 Ω determinare la tensione V mediante la legge di Ohm (V = I·R) sia in notazione scientifica che coi prefissi con 3 cifre significative.

Svolgimento 8: Per prima cosa occorre convertire in notazione scientifica i dati, sostituendo ai prefissi la giusta potenza di 10. Se non ci sono esigenze particolari R può restare così com'è. I = $9,45\cdot10^3$ A e R = $2700~\Omega$. Facciamo i conti. I numeri vanno moltiplicati normalmente, mentre l'esponente è solo uno quindi resta quello.

$$V = I \cdot R = 9,45 \cdot 10^3 \cdot 2700 = 25'515 \cdot 10^3 V$$

Il numero ottenuto è corretto ma è un po' troppo lungo, ha ben 5 cifre significative. Possiamo convertirlo spostando la virgola 3 posti a sinistra. Il numero decresce, quindi l'esponente cresce di 3 unità. Infine togliamo la notazione scientifica e mettiamo il prefisso.

$$V = 25'515 \cdot 10^3 \approx 25,515 \cdot 10^6 V = 25,5 \cdot 10^6 V = 25,5 MV$$

Approssimo a 3 cifre significative eliminando i numeri in eccesso. L'1 diventa 2. **Esercizio 9**: Due resistori sono collegati in serie R_1 = 187,52 k Ω e R_2 = 21,475 M Ω . Bisogna calcolare il resistore equivalente usando la seguente formula $R_S = R_1 + R_2$. Il risultato deve essere sia in notazione scientifica che coi prefissi con 3 cifre significative.

Svolgimento 9: Per prima cosa occorre convertire in notazione scientifica i dati, sostituendo ai prefissi la giusta potenza di 10. R_1 = 187,52·10³ Ω e R_2 = 21,475·10⁶ Ω . Possiamo eseguire la somma solo se i due addendi hanno stessa base e stesso esponente!! Quindi bisogna portare o tutto a 10³ oppure tutto a 10⁶. Scegliamo di portare a 10³ così abbiamo meno decimali. Quindi su R_2 l'esponente cala di 3 unità, quindi il numero deve aumentare di 3 posti: R_2 = 21'475·10³ Ω . Facciamo i conti.

$$R_S = R_1 + R_2 = 187,52 \cdot 10^3 + 21'475 \cdot 10^3 = (187,52 + 21'475) \cdot 10^3 = 21'662,52 \cdot 10^3 \Omega$$

Il numero ottenuto è corretto ma è un po' troppo lungo, ha ben 7 cifre significative. Possiamo approssimarlo togliendo i decimali. Essendo il primo numero tagliato =5, il 2 diventa 3.

$$R_{\rm S} = 21'662,52 \cdot 10^3 \ \Omega \cong 21'663 \cdot 10^3 \ \Omega = 21'663 k\Omega$$

Così ci sono 5 cifre significative. Se vogliamo per forza avere solo 3 cifre significative, bisogna spostare la virgola di 3 posti a sinistra. Il numero si riduce di 3 posti, quindi l'esponente aumenta di 3 unità. A quel punto si può ulteriormente approssimare e il primo 6 diventa 7.

$$R_S \cong 21'663 \cdot 10^3 \,\Omega = 21,663 \cdot 10^6 \,\Omega \cong \mathbf{21}, \mathbf{7} \cdot \mathbf{10}^6 \,\Omega = \mathbf{21}, \mathbf{7} \,\mathrm{M}\Omega$$

Approssimo a 3 cifre significative eliminando i numeri in eccesso.

Il 6 diventa 7.

Esercizio 10: Due resistori sono collegati in serie R_1 = 745,50 k Ω e R_2 = 174,69 M Ω . Bisogna calcolare il resistore equivalente usando la seguente formula $R_S = R_1 + R_2$. Il risultato deve essere sia in notazione scientifica che coi prefissi con 3 cifre significative.

Svolgimento 10: Per prima cosa occorre convertire in notazione scientifica i dati, sostituendo ai prefissi la giusta potenza di 10. R_1 = 745,5·10³ Ω e R_2 = 174,69·10⁶ Ω . Possiamo eseguire la somma solo se i due addendi hanno stessa base e stesso esponente!! Quindi bisogna portare o tutto a 10³ oppure tutto a 10⁶. Stavolta scegliamo di portare a 10⁶: su R_1 l'esponente cresce di 3 unità, quindi il numero deve calare di 3 posti: R_1 = 0,7455·10⁶ Ω . Facciamo i conti.

$$R_S = R_1 + R_2 = 0.7455 \cdot 10^6 + 174.69 \cdot 10^6 = (0.7455 + 174.69) \cdot 10^6 = 175.4355 \cdot 10^6 \,\Omega$$

Il numero ottenuto è corretto ma è un po' troppo lungo, ha ben 7 cifre significative. Possiamo approssimarloa 3 cifre significative togliendo i decimali.

$$R_S = 175,4355 \cdot 10^6 \,\Omega \cong \mathbf{175} \cdot \mathbf{10^6} \,\Omega = \mathbf{175} \,\mathrm{M}\Omega$$

Esercizio 11: Due resistori sono collegati in parallelo R_1 = 865,08 k Ω e R_2 = 18,955 M Ω . Bisogna calcolare il resistore equivalente usando la seguente formula $R_P = \frac{R_1 \cdot R_2}{R_1 + R_2}$ Il risultato deve essere sia in notazione scientifica che coi prefissi con 3 cifre significative.

Svolgimento 11: Per prima cosa occorre convertire in notazione scientifica i dati, sostituendo ai prefissi la giusta potenza di 10. R_1 = 865,08·10³ Ω e e R_2 = 18,955·10⁶ Ω . Qui c'è una moltiplicazione, una somma e una divisione. **Possiamo eseguire la somma solo se i due addendi hanno stessa base e stesso esponente!!** Quindi conviene portare o tutto a 10³ oppure tutto a 10⁶. Stavolta scegliamo di portare a 10⁶ : su R_1 l'esponente cresce di 3 unità, quindi il numero deve calare di 3 posti:

 $R_1 = 0.86508 \cdot 10^6 \Omega$.

I nostri numeri hanno entrambi 5 cifre significative. Essendo il calcolo un po' complicato conviene approssimarli già da subito a 3 cifre. Quindi:

 $R_1 = 0.86508 \cdot 10^6 \Omega \cong 0.865 \cdot 10^6 \Omega$

 $R_2 = 18,955 \cdot 10^6 \Omega \cong 19,0 \cdot 10^6 \Omega = 19 \cdot 10^6 \Omega$ (qui approssimando a 3 cifre, il 9 diventa 0 e l'8 diventa 9; l'ultimo 0 si toglie)

Ora svolgiamo i calcoli:

$$R_P = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{0.865 \cdot 10^6 \cdot 19 \cdot 10^6}{0.865 \cdot 10^6 + 19 \cdot 10^6} = \frac{(0.865 \cdot 19) \cdot 10^{6+6}}{(0.865 + 19) \cdot 10^6} = \frac{16.435 \cdot 10^{12}}{19.865 \cdot 10^6} \cong 0.82733 \cdot 10^{12-6} = \frac{16.435 \cdot 10^{12}}{19.865 \cdot 10^6} = \frac{16.435 \cdot 10^{12}}{19.865 \cdot 10^6}$$

Al numeratore si applica la proprietà del prodotto e al denominatore si fa raccoglimento totale di 10⁶

Si applica la proprietà della divisione

Approssimiamo il risultato sempre a 3 cifre significative

$$\cong 0.827 \cdot 10^6 \Omega = 827 \cdot 10^3 \Omega = 827 k\Omega$$

Per avere un numero senza virgole portiamo l'esponente da 10⁶ a 10³

Metodo più rapido: quando si fa il parallelo, **se tutte le R hanno lo stesso esponente**, si può anche raccogliere l'esponente alla fine e fare solo i calcoli numerici:

$$R_P = \frac{R_1 \cdot R_2}{R_1 + R_2} = \left(\frac{0.865 \cdot 19}{0.865 + 19}\right) \cdot 10^6 \cong \mathbf{0.827} \cdot \mathbf{10^6} \ \Omega = \mathbf{827} \ k\Omega$$

Esercizio 12: Due resistori sono collegati in parallelo R_1 = 0,0056482 Ω e R_2 = 1742,5 $\mu\Omega$. Bisogna calcolare il resistore equivalente usando la seguente formula $R_P = \frac{R_1 \cdot R_2}{R_1 + R_2}$ Il risultato deve essere sia in notazione scientifica che coi prefissi con 3 cifre significative.

Svolgimento 12: Per prima cosa occorre convertire in notazione scientifica i dati, sostituendo ai prefissi la giusta potenza di 10. R_1 resta così mentre e R_2 = 1742,5·10⁻⁶ Ω . Qui c'è una moltiplicazione, una somma e una divisione. **Possiamo eseguire la somma solo se i due addendi hanno stessa base e stesso esponente!!** Quindi conviene portare o tutto a 10⁻³ oppure tutto a 10⁻⁶. Stavolta scegliamo di portare a 10⁻³.

Su R₁ l'esponente cala di 3 unità, quindi il numero deve crescere di 3 posti: $R_1 = 5,6482 \cdot 10^{-3} \Omega$.

Su R₂ l'esponente cresce di 3 unità, quindi il numero deve calare di 3 posti: $R_2 = 1,7425 \cdot 10^{-3} \Omega$.

I nostri numeri hanno entrambi 5 cifre significative. Essendo il calcolo un po' complicato conviene approssimarli già da subito a 3 cifre. Quindi:

 $R_1 = 5,6482 \cdot 10^{-3} \ \Omega \cong 5,65 \cdot 10^{-3} \ \Omega \ \ (\text{qui approssimando a 3 cifre, l'8 è maggiore di 5 quindi il 4 diventa 5)}$

 $R_2 = 1,7425 \cdot 10^{-3} \Omega \cong 1,74 \cdot 10^{-3} \Omega$ (qui approssimando a 3 cifre, il 2 è minore di 5 quindi il 4 resta 4)

Ora svolgiamo i calcoli utilizzando il metodo rapido (gli esponenti sono tutti uguali quindi si possono raccogliere):

$$R_P = \frac{R_1 \cdot R_2}{R_1 + R_2} = \left(\frac{5,65 \cdot 1,74}{5,65 + 1,74}\right) \cdot 10^{-3} = 1,330311 \cdot 10^{-3} \cong \mathbf{1}, \mathbf{33} \cdot \mathbf{10}^{-3} \ \mathbf{\Omega} = \mathbf{1},\mathbf{33} \ \mathbf{m\Omega}$$
Approssimiamo il risultato sempre a 3 cifre significative